
Questionary
Release 2.0.1

Questionary

Oct 16, 2023

CONTENTS

1 License 3
1.1 Installation . 3
1.2 Quickstart . 4
1.3 Question Types . 5
1.4 Advanced Concepts . 15
1.5 API Reference . 22
1.6 Support . 27
1.7 Contributor’s Guide . 27
1.8 Changelog . 29

Index 33

i

ii

Questionary, Release 2.0.1

Questionary is a Python library for effortlessly building pretty command line interfaces

It makes it very easy to query your user for input. You need your user to confirm a destructive action or enter a file
path? We’ve got you covered:

Creating your first prompt is just a few key strokes away

import questionary

first_name = questionary.text("What's your first name").ask()

This prompt will ask the user to provide free text input and the result is stored in first_name.

You can install Questionary using pip (for details, head over to the Installation page):

$ pip install questionary

Ready to go? Check out the Quickstart.

CONTENTS 1

https://pypi.org/project/questionary/
https://pypi.python.org/pypi/questionary

Questionary, Release 2.0.1

2 CONTENTS

CHAPTER

ONE

LICENSE

Licensed under the MIT License. Copyright 2020 Tom Bocklisch.

1.1 Installation

1.1.1 Use a Published Release

To install Questionary, simply run this command in your terminal of choice:

$ pip install questionary

1.1.2 Build from Source

Installing from source code is only necessary, if you want to make changes to the Questionary source code. Questionary
is actively developed on GitHub.

You can either clone the public repository:

$ git clone git@github.com:tmbo/questionary.git

Or, download the tarball:

$ curl -OL https://github.com/tmbo/questionary/tarball/master

Note: If you are using windows, you can also download a zip instead:

$ curl -OL https://github.com/tmbo/questionary/zipball/master

Questionary uses Poetry for packaging and dependency management. If you want to build Questionary from source,
you must install Poetry first:

$ curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py␣
→˓| python3

There are several other ways to install Poetry, as seen in the official guide.

To install Questionary and its dependencies in editable mode, execute

3

https://github.com/tmbo/questionary/blob/master/LICENSE
https://github.com/tmbo/questionary
https://python-poetry.org/
https://python-poetry.org/docs/#installation

Questionary, Release 2.0.1

$ make install

1.2 Quickstart

Questionary supports two different concepts:

• creating a single question for the user

questionary.password("What's your secret?").ask()

• creating a form with multiple questions asked one after another

answers = questionary.form(
first = questionary.confirm("Would you like the next question?", default=True),
second = questionary.select("Select item", choices=["item1", "item2", "item3"])

).ask()

1.2.1 Asking a Single Question

Questionary ships with a lot of different Question Types to provide the right prompt for the right question. All of them
work in the same way though. Firstly, you create a question:

import questionary

question = questionary.text("What's your first name")

and secondly, you need to prompt the user to answer it:

answer = question.ask()

Since our question is a text prompt, answer will contain the text the user typed after they submitted it.

You can concatenate creating and asking the question in a single line if you like, e.g.

import questionary

answer = questionary.text("What's your first name").ask()

Note: There are a lot more question types apart from text. For a description of the different question types, head
over to the Question Types.

4 Chapter 1. License

Questionary, Release 2.0.1

1.2.2 Asking Multiple Questions

You can use the form() function to ask a collection of Questions. The questions will be asked in the order they are
passed to :meth:`~questionary.form`.

import questionary

answers = questionary.form(
first = questionary.confirm("Would you like the next question?", default=True),
second = questionary.select("Select item", choices=["item1", "item2", "item3"])

).ask()

print(answers)

The printed output will have the following format:

{'first': True, 'second': 'item2'}

The prompt() function also allows you to ask a collection of questions, however instead of taking Question instances,
it takes a dictionary:

import questionary

questions = [
{
"type": "confirm",
"name": "first",
"message": "Would you like the next question?",
"default": True,

},
{
"type": "select",
"name": "second",
"message": "Select item",
"choices": ["item1", "item2", "item3"],

},
]

questionary.prompt(questions)

The format of the returned answers is the same as the one for form(). You can find more details on the configuration
dictionaries in Create Questions from Dictionaries.

1.3 Question Types

The different question types are meant to cover different use cases. The parameters and configuration options are
explained in detail for each type. But before we get into to many details, here is a cheatsheet with the available
question types:

• use Text to ask for free text input

• use Password to ask for free text where the text is hidden

• use File Path to ask for a file or directory path with autocompletion

1.3. Question Types 5

Questionary, Release 2.0.1

• use Confirmation to ask a yes or no question

• use Select to ask the user to select one item from a beautiful list

• use Raw Select to ask the user to select one item from a list

• use Checkbox to ask the user to select any number of items from a list

• use Autocomplete to ask for free text with autocomplete help

• use Press Any Key To Continue to ask the user to press any key to continue

1.3.1 Text

questionary.text(default='', validate=None, qmark='?', style=None, multiline=False, instruction=None,
lexer=None, **kwargs)

Prompt the user to enter a free text message.

This question type can be used to prompt the user for some text input.

Example

>>> import questionary
>>> questionary.text("What's your first name?").ask()
? What's your first name? Tom
'Tom'

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text.

• default (str) – Default value will be returned if the user just hits enter.

• validate (Any) – Require the entered value to pass a validation. The value can not be
submitted until the validator accepts it (e.g. to check minimum password length).

This can either be a function accepting the input and returning a boolean, or an class reference
to a subclass of the prompt toolkit Validator class.

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• multiline (bool) – If True, multiline input will be enabled.

• instruction (Optional[str]) – Write instructions for the user if needed. If None and
multiline=True, some instructions will appear.

• lexer (Optional[Lexer]) – Supply a valid lexer to style the answer. Leave empty to use a
simple one by default.

• kwargs (Any) – Additional arguments, they will be passed to prompt toolkit.

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

6 Chapter 1. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.lexers.Lexer
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

1.3.2 Password

questionary.password(default='', validate=None, qmark='?', style=None, **kwargs)
A text input where a user can enter a secret which won’t be displayed on the CLI.

This question type can be used to prompt the user for information that should not be shown in the command line.
The typed text will be replaced with *.

Example

>>> import questionary
>>> questionary.password("What's your secret?").ask()
? What's your secret? ********
'secret42'

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text.

• default (str) – Default value will be returned if the user just hits enter.

• validate (Any) – Require the entered value to pass a validation. The value can not be
submitted until the validator accepts it (e.g. to check minimum password length).

This can either be a function accepting the input and returning a boolean, or an class reference
to a subclass of the prompt toolkit Validator class.

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.3.3 File Path

questionary.path(default='', qmark='?', validate=None, completer=None, style=None, only_directories=False,
get_paths=None, file_filter=None, complete_style=CompleteStyle.MULTI_COLUMN ,
**kwargs)

A text input for a file or directory path with autocompletion enabled.

1.3. Question Types 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

Example

>>> import questionary
>>> questionary.path(
>>> "What's the path to the projects version file?"
>>>).ask()
? What's the path to the projects version file? ./pyproject.toml
'./pyproject.toml'

This is just a really basic example, the prompt can be customized using the parameters.

Parameters

• message (str) – Question text.

• default (str) – Default return value (single value).

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• complete_style (CompleteStyle) – How autocomplete menu would be shown, it could
be COLUMN MULTI_COLUMN or READLINE_LIKE from prompt_toolkit.shortcuts.
CompleteStyle.

• validate (Any) – Require the entered value to pass a validation. The value can not be
submitted until the validator accepts it (e.g. to check minimum password length).

This can either be a function accepting the input and returning a boolean, or an class reference
to a subclass of the prompt toolkit Validator class.

• completer (Optional[Completer]) – A custom completer to use in the prompt. For more
information, see this.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• only_directories (bool) – Only show directories in auto completion. This option does
not do anything if a custom completer is passed.

• get_paths (Optional[Callable[[], List[str]]]) – Set a callable to generate paths to
traverse for suggestions. This option does not do anything if a custom completer is passed.

• file_filter (Optional[Callable[[str], bool]]) – Optional callable to filter suggested
paths. Only paths where the passed callable evaluates to True will show up in the suggested
paths. This does not validate the typed path, e.g. it is still possible for the user to enter a path
manually, even though this filter evaluates to False. If in addition to filtering suggestions
you also want to validate the result, use validate in combination with the file_filter.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

8 Chapter 1. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.completion.Completer
https://python-prompt-toolkit.readthedocs.io/en/master/pages/asking_for_input.html#a-custom-completer
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

1.3.4 Confirmation

questionary.confirm(default=True, qmark='?', style=None, auto_enter=True, instruction=None, **kwargs)
A yes or no question. The user can either confirm or deny.

This question type can be used to prompt the user for a confirmation of a yes-or-no question. If the user just hits
enter, the default value will be returned.

Example

>>> import questionary
>>> questionary.confirm("Are you amazed?").ask()
? Are you amazed? Yes
True

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text.

• default (bool) – Default value will be returned if the user just hits enter.

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• auto_enter (bool) – If set to False, the user needs to press the ‘enter’ key to accept their
answer. If set to True, a valid input will be accepted without the need to press ‘Enter’.

• instruction (Optional[str]) – A message describing how to proceed through the con-
firmation prompt.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.3.5 Select

questionary.select(choices, default=None, qmark='?', pointer='»', style=None, use_shortcuts=False,
use_arrow_keys=True, use_indicator=False, use_jk_keys=True, use_emacs_keys=True,
show_selected=False, instruction=None, **kwargs)

A list of items to select one option from.

The user can pick one option and confirm it (if you want to allow the user to select multiple options, use
questionary.checkbox() instead).

1.3. Question Types 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

Example

>>> import questionary
>>> questionary.select(
... "What do you want to do?",
... choices=[
... "Order a pizza",
... "Make a reservation",
... "Ask for opening hours"
...]).ask()
? What do you want to do? Order a pizza
'Order a pizza'

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text

• choices (Sequence[Union[str, Choice, Dict[str, Any]]]) – Items shown in the selec-
tion, this can contain Choice or or Separator objects or simple items as strings. Passing
Choice objects, allows you to configure the item more (e.g. preselecting it or disabling it).

• default (Union[str, Choice, Dict[str, Any], None]) – A value corresponding to a se-
lectable item in the choices, to initially set the pointer position to.

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• pointer (Optional[str]) – Pointer symbol in front of the currently highlighted element.
By default this is a ». Use None to disable it.

• instruction (Optional[str]) – A hint on how to navigate the menu. It’s (Use
shortcuts) if only use_shortcuts is set to True, (Use arrow keys or shortcuts)
if use_arrow_keys & use_shortcuts are set and (Use arrow keys) by default.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• use_indicator (bool) – Flag to enable the small indicator in front of the list highlighting
the current location of the selection cursor.

• use_shortcuts (bool) – Allow the user to select items from the list using shortcuts. The
shortcuts will be displayed in front of the list items. Arrow keys, j/k keys and shortcuts are
not mutually exclusive.

• use_arrow_keys (bool) – Allow the user to select items from the list using arrow keys.
Arrow keys, j/k keys and shortcuts are not mutually exclusive.

• use_jk_keys (bool) – Allow the user to select items from the list using j (down) and k (up)
keys. Arrow keys, j/k keys and shortcuts are not mutually exclusive.

• use_emacs_keys (bool) – Allow the user to select items from the list using Ctrl+N (down)
and Ctrl+P (up) keys. Arrow keys, j/k keys, emacs keys and shortcuts are not mutually
exclusive.

• show_selected (bool) – Display current selection choice at the bottom of list.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

10 Chapter 1. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

Return type
Question

1.3.6 Raw Select

questionary.rawselect(choices, default=None, qmark='?', pointer='»', style=None, **kwargs)
Ask the user to select one item from a list of choices using shortcuts.

The user can only select one option.

Example

>>> import questionary
>>> questionary.rawselect(
... "What do you want to do?",
... choices=[
... "Order a pizza",
... "Make a reservation",
... "Ask for opening hours"
...]).ask()
? What do you want to do? Order a pizza
'Order a pizza'

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text.

• choices (Sequence[Union[str, Choice, Dict[str, Any]]]) – Items shown in the selec-
tion, this can contain Choice or or Separator objects or simple items as strings. Passing
Choice objects, allows you to configure the item more (e.g. preselecting it or disabling it).

• default (Optional[str]) – Default return value (single value).

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• pointer (Optional[str]) – Pointer symbol in front of the currently highlighted element.
By default this is a ». Use None to disable it.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.3. Question Types 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

1.3.7 Checkbox

questionary.checkbox(choices, default=None, validate=<function <lambda>>, qmark='?', pointer='»',
style=None, initial_choice=None, use_arrow_keys=True, use_jk_keys=True,
use_emacs_keys=True, instruction=None, **kwargs)

Ask the user to select from a list of items.

This is a multiselect, the user can choose one, none or many of the items.

Example

>>> import questionary
>>> questionary.checkbox(
... 'Select toppings',
... choices=[
... "Cheese",
... "Tomato",
... "Pineapple",
...]).ask()
? Select toppings done (2 selections)
['Cheese', 'Pineapple']

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text

• choices (Sequence[Union[str, Choice, Dict[str, Any]]]) – Items shown in the selec-
tion, this can contain Choice or or Separator objects or simple items as strings. Passing
Choice objects, allows you to configure the item more (e.g. preselecting it or disabling it).

• default (Optional[str]) – Default return value (single value). If you want to preselect
multiple items, use Choice("foo", checked=True) instead.

• validate (Callable[[List[str]], Union[bool, str]]) – Require the entered value to pass
a validation. The value can not be submitted until the validator accepts it (e.g. to check
minimum password length).

This should be a function accepting the input and returning a boolean. Alternatively, the
return value may be a string (indicating failure), which contains the error message to be
displayed.

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?.

• pointer (Optional[str]) – Pointer symbol in front of the currently highlighted element.
By default this is a ». Use None to disable it.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• initial_choice (Union[str, Choice, Dict[str, Any], None]) – A value corresponding
to a selectable item in the choices, to initially set the pointer position to.

• use_arrow_keys (bool) – Allow the user to select items from the list using arrow keys.

• use_jk_keys (bool) – Allow the user to select items from the list using j (down) and k (up)
keys.

12 Chapter 1. License

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Questionary, Release 2.0.1

• use_emacs_keys (bool) – Allow the user to select items from the list using Ctrl+N (down)
and Ctrl+P (up) keys.

• instruction (Optional[str]) – A message describing how to navigate the menu.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.3.8 Autocomplete

questionary.autocomplete(choices, default='', qmark='?', completer=None, meta_information=None,
ignore_case=True, match_middle=True, complete_style=CompleteStyle.COLUMN ,
validate=None, style=None, **kwargs)

Prompt the user to enter a message with autocomplete help.

Example

>>> import questionary
>>> questionary.autocomplete(
... 'Choose ant specie',
... choices=[
... 'Camponotus pennsylvanicus',
... 'Linepithema humile',
... 'Eciton burchellii',
... "Atta colombica",
... 'Polyergus lucidus',
... 'Polyergus rufescens',
...]).ask()
? Choose ant specie Atta colombica
'Atta colombica'

This is just a really basic example, the prompt can be customised using the parameters.

Parameters

• message (str) – Question text

• choices (List[str]) – Items shown in the selection, this contains items as strings

• default (str) – Default return value (single value).

• qmark (str) – Question prefix displayed in front of the question. By default this is a ?

• completer (Optional[Completer]) – A prompt_toolkit prompt_toolkit.
completion.Completion implementation. If not set, a questionary completer im-
plementation will be used.

• meta_information (Optional[Dict[str, Any]]) – A dictionary with informa-
tion/anything about choices.

• ignore_case (bool) – If true autocomplete would ignore case.

1.3. Question Types 13

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.completion.Completer
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.completion.Completion
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.completion.Completion
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Questionary, Release 2.0.1

• match_middle (bool) – If true autocomplete would search in every string position not only
in string begin.

• complete_style (CompleteStyle) – How autocomplete menu would be shown, it could
be COLUMN MULTI_COLUMN or READLINE_LIKE from prompt_toolkit.shortcuts.
CompleteStyle.

• validate (Any) – Require the entered value to pass a validation. The value can not be
submitted until the validator accepts it (e.g. to check minimum password length).

This can either be a function accepting the input and returning a boolean, or an class reference
to a subclass of the prompt toolkit Validator class.

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.3.9 Printing Formatted Text

questionary.print(style=None, **kwargs)
Print formatted text.

Sometimes you want to spice up your printed messages a bit, questionary.print() is a helper to do just that.

Example

>>> import questionary
>>> questionary.print("Hello World ", style="bold italic fg:darkred")
Hello World

Parameters

• text (str) – Text to be printed.

• style (Optional[str]) – Style used for printing. The style argument uses the prompt
toolkit style strings.

• kwargs (Any) –

Return type
None

14 Chapter 1. License

https://docs.python.org/3/library/functions.html#bool
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.shortcuts.CompleteStyle
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/advanced_topics/styling.html#styling
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

Questionary, Release 2.0.1

1.3.10 Press Any Key To Continue

questionary.press_any_key_to_continue(style=None, **kwargs)
Wait until user presses any key to continue.

Example

>>> import questionary
>>> questionary.press_any_key_to_continue().ask()
Press any key to continue...
''

Parameters

• message (Optional[str]) – Question text. Defaults to "Press any key to continue.
.."

• style (Optional[Style]) – A custom color and style for the question parts. You can con-
figure colors as well as font types for different elements.

• kwargs (Any) –

Returns
Question instance, ready to be prompted (using .ask()).

Return type
Question

1.4 Advanced Concepts

This page describes some of the more advanced uses of Questionary.

1.4.1 Validation

Many of the prompts support a validate argument, which allows the answer to be validated before being submitted.
A user can not submit an answer if it doesn’t pass the validation.

The example below shows text() input with a validation:

import questionary
from questionary import Validator, ValidationError, prompt

class NameValidator(Validator):
def validate(self, document):

if len(document.text) == 0:
raise ValidationError(

message="Please enter a value",
cursor_position=len(document.text),

)

questionary.text("What's your name?", validate=NameValidator).ask()

1.4. Advanced Concepts 15

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.styles.Style
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

In this example, the user can not enter a non empty value. If the prompt is submitted without a value. Questionary will
show the error message and reject the submission until the user enters a value.

Alternatively, we can replace the NameValidator class with a simple function, as seen below:

import questionary

print(questionary.text(
"What's your name?",
validate=lambda text: True if len(text) > 0 else "Please enter a value"

).ask())

Finally, if we do not care about the error message being displayed, we can omit the error message from the final example
to use the default:

import questionary

print(questionary.text("What's your name?", validate=lambda text: len(text) > 0).ask())

example

The checkbox() prompt does not support passing a Validator. See the API Reference for all the prompts which
support the validate parameter.

A Validation Example using the Password Question

Here we see an example of validate being used on a password() prompt to enforce complexity requirements:

import re
import questionary

def password_validator(password):

if len(password) < 10:
return "Password must be at least 10 characters"

elif re.search("[0-9]", password) is None:
return "Password must contain a number"

elif re.search("[a-z]", password) is None:
return "Password must contain an lower-case letter"

elif re.search("[A-Z]", password) is None:
return "Password must contain an upper-case letter"

else:
return True

print(questionary.password("Enter your password", validate=password_validator).ask())

16 Chapter 1. License

Questionary, Release 2.0.1

1.4.2 Keyboard Interrupts

Prompts can be invoked in either a ‘safe’ or ‘unsafe’ way. The safe way captures keyboard interrupts and handles them
by catching the interrupt and returning None for the asked question. If a question is asked using unsafe functions, the
keyboard interrupts are not caught.

Safe

The following are safe (capture keyboard interrupts):

• prompt();

• ask on Form (returned by form());

• ask on Question, which is returned by the various prompt functions (e.g. text(), checkbox()).

When a keyboard interrupt is captured, the message "Cancelled by user" is displayed (or a custom message, if one
is given) and None is returned. Here is an example:

Questionary handles keyboard interrupt and returns `None` if the
user hits e.g. `Ctrl+C`
prompt(...)

Unsafe

The following are unsafe (do not catch keyboard interrupts):

• unsafe_prompt();

• unsafe_ask on Form (returned by form());

• unsafe_ask on Question, which is returned by the various prompt functions (e.g. text(), checkbox()).

As a caller you must handle keyboard interrupts yourself when calling these methods. Here is an example:

try:
unsafe_prompt(...)

except KeyboardInterrupt:
your chance to handle the keyboard interrupt
print("Cancelled by user")

1.4.3 Asynchronous Usage

If you are running asynchronous code and you want to avoid blocking your async loop, you can ask your questions using
await. questionary.Question and questionary.Form have ask_async and unsafe_ask_async methods to
invoke the question using asyncio:

import questionary

answer = await questionary.text("What's your name?").ask_async()

1.4. Advanced Concepts 17

https://docs.python.org/3/library/asyncio.html#module-asyncio

Questionary, Release 2.0.1

1.4.4 Themes & Styling

You can customize all the colors used for the prompts. Every part of the prompt has an identifier, which you can use to
style it. Let’s create your own custom style:

from questionary import Style

custom_style_fancy = Style([
('qmark', 'fg:#673ab7 bold'), # token in front of the question
('question', 'bold'), # question text
('answer', 'fg:#f44336 bold'), # submitted answer text behind the question
('pointer', 'fg:#673ab7 bold'), # pointer used in select and checkbox prompts
('highlighted', 'fg:#673ab7 bold'), # pointed-at choice in select and checkbox␣

→˓prompts
('selected', 'fg:#cc5454'), # style for a selected item of a checkbox
('separator', 'fg:#cc5454'), # separator in lists
('instruction', ''), # user instructions for select, rawselect,␣

→˓checkbox
('text', ''), # plain text
('disabled', 'fg:#858585 italic') # disabled choices for select and checkbox␣

→˓prompts
])

To use the custom style, you need to pass it to the question as a parameter:

questionary.text("What's your phone number", style=custom_style_fancy).ask()

Note: Default values will be used for any token types not specified in your custom style.

Styling Choices in Select & Checkbox Questions

It is also possible to use a list of token tuples as a Choice title to change how an option is displayed in questionary.
select and questionary.checkbox. Make sure to define any additional styles as part of your custom style definition.

import questionary
from questionary import Choice, Style

custom_style_fancy = questionary.Style([
("highlighted", "bold"), # style for a token which should appear highlighted

])

choices = [Choice(title=[("class:text", "order a "),
("class:highlighted", "big pizza")])]

questionary.select(
"What do you want to do?",
choices=choices,
style=custom_style_fancy).ask()

18 Chapter 1. License

Questionary, Release 2.0.1

1.4.5 Conditionally Skip Questions

Sometimes it is helpful to be able to skip a question based on a condition. To avoid the need for an if around the
question, you can pass the condition when you create the question:

import questionary

DISABLED = True
response = questionary.confirm("Are you amazed?").skip_if(DISABLED, default=True).ask()

If the condition (in this case DISABLED) is True, the question will be skipped and the default value gets returned,
otherwise the user will be prompted as usual and the default value will be ignored.

1.4.6 Create Questions from Dictionaries

Instead of creating questions using the Python functions, you can also create them using a configuration dictionary:

from questionary import prompt

questions = [
{

'type': 'text',
'name': 'phone',
'message': "What's your phone number",

},
{

'type': 'confirm',
'message': 'Do you want to continue?',
'name': 'continue',
'default': True,

}
]

answers = prompt(questions)

The questions will be prompted one after another and prompt will return as soon as all of them are answered. The
returned answers will be a dictionary containing the responses, e.g.

{"phone": "0123123", "continue": False}.

Each configuration dictionary for a question must contain the following keys:

type (required)
The type of the question.

name (required)
The name of the question (will be used as key in the answers dictionary).

message (required)
Message that will be shown to the user.

In addition to these required configuration parameters, you can add the following optional parameters:

qmark (optional)
Question mark to use - defaults to ?.

1.4. Advanced Concepts 19

Questionary, Release 2.0.1

default (optional)
Preselected value.

choices (optional)
List of choices (applies when 'type': 'select') or function returning a list of choices.

when (optional)
Function checking if this question should be shown or skipped (same functionality as skip_if).

validate (optional)
Function or Validator Class performing validation (will be performed in real time as users type).

filter (optional)
Receive the user input and return the filtered value to be used inside the program.

Further information can be found at the questionary.prompt documentation.

A Complex Example using a Dictionary Configuration

Questionary allows creating quite complex workflows when combining all of the above concepts:

from pprint import pprint

from questionary import Separator
from questionary import prompt

def ask_dictstyle(**kwargs):
questions = [

{
just print a message, don't ask a question
does not require a name (but if provided, is ignored) and does not return␣

→˓a value
"type": "print",
"name": "intro",
"message": "This example demonstrates advanced features! ",
"style": "bold italic",

},
{

"type": "confirm",
"name": "conditional_step",
"message": "Would you like the next question?",
"default": True,

},
{

"type": "text",
"name": "next_question",
"message": "Name this library?",
Validate if the first question was answered with yes or no
"when": lambda x: x["conditional_step"],
Only accept questionary as answer
"validate": lambda val: val == "questionary",

},
{

"type": "select",
(continues on next page)

20 Chapter 1. License

Questionary, Release 2.0.1

(continued from previous page)

"name": "second_question",
"message": "Select item",
"choices": ["item1", "item2", Separator(), "other"],

},
{

just print a message, don't ask a question
does not require a name and does not return a value
"type": "print",
"message": "Please enter a value for 'other'",
"style": "bold italic fg:darkred",
"when": lambda x: x["second_question"] == "other",

},
{

"type": "text",
intentionally overwrites result from previous question
"name": "second_question",
"message": "Insert free text",
"when": lambda x: x["second_question"] == "other",

},
]
return prompt(questions, **kwargs)

if __name__ == "__main__":
pprint(ask_dictstyle())

The above workflow will show to the user the following prompts:

1. Yes/No question "Would you like the next question?".

2. "Name this library?" - only shown when the first question is answered with yes.

3. A question to select an item from a list.

4. Free text input if "other" is selected in step 3.

Depending on the route the user took, the result will look like the following:

{
'conditional_step': False,
'second_question': 'Test input' # Free form text

}

{
'conditional_step': True,
'next_question': 'questionary',
'second_question': 'Test input' # Free form text

}

You can test this workflow yourself by running the advanced_workflow.py example.

1.4. Advanced Concepts 21

https://github.com/tmbo/questionary/blob/master/examples/advanced_workflow.py

Questionary, Release 2.0.1

1.5 API Reference

class questionary.Choice(title, value=None, disabled=None, checked=False, shortcut_key=True)
One choice in a select(), rawselect() or checkbox().

Parameters

• title (Union[str, List[Tuple[str, str]], List[Tuple[str, str, Callable[[Any],
None]]], None]) – Text shown in the selection list.

• value (Optional[Any]) – Value returned, when the choice is selected. If this argument is
None or unset, then the value of title is used.

• disabled (Optional[str]) – If set, the choice can not be selected by the user. The provided
text is used to explain, why the selection is disabled.

• checked (Optional[bool]) – Preselect this choice when displaying the options.

• shortcut_key (Union[str, bool, None]) – Key shortcut used to select this item.

static build(c)
Create a choice object from different representations.

Parameters
c (Union[str, Choice, Dict[str, Any]]) – Either a str, Choice or dictwith name, value,
disabled, checked and key properties.

Return type
Choice

Returns
An instance of the Choice object.

checked: Optional[bool]

Whether the choice is initially selected

disabled: Optional[str]

Whether the choice can be selected

shortcut_key: Optional[str]

A shortcut key for the choice

title: Union[str, List[Tuple[str, str]], List[Tuple[str, str, Callable[[Any],
None]]], None]

Display string for the choice

value: Optional[Any]

Value of the choice

class questionary.Form(*form_fields)
Multi question prompts. Questions are asked one after another.

All the answers are returned as a dict with one entry per question.

This class should not be invoked directly, instead use form().

Parameters
form_fields (Sequence[FormField]) –

22 Chapter 1. License

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence

Questionary, Release 2.0.1

ask(patch_stdout=False, kbi_msg='Cancelled by user')
Ask the questions synchronously and return user response.

Parameters

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• kbi_msg (str) – The message to be printed on a keyboard interrupt.

Return type
Dict[str, Any]

Returns
The answers from the form.

async ask_async(patch_stdout=False, kbi_msg='Cancelled by user')
Ask the questions using asyncio and return user response.

Parameters

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• kbi_msg (str) – The message to be printed on a keyboard interrupt.

Return type
Dict[str, Any]

Returns
The answers from the form.

unsafe_ask(patch_stdout=False)
Ask the questions synchronously and return user response.

Does not catch keyboard interrupts.

Parameters
patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are printing
to stdout.

Return type
Dict[str, Any]

Returns
The answers from the form.

async unsafe_ask_async(patch_stdout=False)
Ask the questions using asyncio and return user response.

Does not catch keyboard interrupts.

Parameters
patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are printing
to stdout.

Return type
Dict[str, Any]

Returns
The answers from the form.

1.5. API Reference 23

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Questionary, Release 2.0.1

class questionary.Question(application)
A question to be prompted.

This is an internal class. Questions should be created using the predefined questions (e.g. text or password).

Parameters
application (Application[Any]) –

ask(patch_stdout=False, kbi_msg='Cancelled by user')
Ask the question synchronously and return user response.

Parameters

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• kbi_msg (str) – The message to be printed on a keyboard interrupt.

Returns
The answer from the question.

Return type
Any

async ask_async(patch_stdout=False, kbi_msg='Cancelled by user')
Ask the question using asyncio and return user response.

Parameters

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• kbi_msg (str) – The message to be printed on a keyboard interrupt.

Returns
The answer from the question.

Return type
Any

skip_if(condition, default=None)
Skip the question if flag is set and return the default instead.

Parameters

• condition (bool) – A conditional boolean value.

• default (Any) – The default value to return.

Returns
self.

Return type
Question

unsafe_ask(patch_stdout=False)
Ask the question synchronously and return user response.

Does not catch keyboard interrupts.

Parameters
patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are printing
to stdout.

24 Chapter 1. License

https://python-prompt-toolkit.readthedocs.io/en/3.0.36/pages/reference.html#prompt_toolkit.application.Application
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

Questionary, Release 2.0.1

Returns
The answer from the question.

Return type
Any

async unsafe_ask_async(patch_stdout=False)
Ask the question using asyncio and return user response.

Does not catch keyboard interrupts.

Parameters
patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are printing
to stdout.

Returns
The answer from the question.

Return type
Any

class questionary.Separator(line=None)
Used to space/separate choices group.

Parameters
line (str) –

default_separator: str = '---------------'

The default separator used if none is specified

line: str

The string being used as a separator

class questionary.FormField(key, question)
Represents a question within a form

Parameters

• key (str) – The name of the form field.

• question (Question) – The question to ask in the form field.

key: str

Alias for field number 0

question: Question

Alias for field number 1

questionary.form()

Create a form with multiple questions.

The parameter name of a question will be the key for the answer in the returned dict.

Parameters
kwargs (Question) – Questions to ask in the form.

Return type
Form

questionary.prompt(answers=None, patch_stdout=False, true_color=False, kbi_msg='Cancelled by user',
**kwargs)

1.5. API Reference 25

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Questionary, Release 2.0.1

Prompt the user for input on all the questions.

Catches keyboard interrupts and prints a message.

See unsafe_prompt() for possible question configurations.

Parameters

• questions (Union[Dict[str, Any], Iterable[Mapping[str, Any]]]) – A list of question
configs representing questions to ask. A question config may have the following options:

– type - The type of question.

– name - An ID for the question (to identify it in the answers dict).

– when - Callable to conditionally show the question. This function takes a dict represent-
ing the current answers.

– filter - Function that the answer is passed to. The return value of this function is saved as
the answer.

Additional options correspond to the parameter names for particular question types.

• answers (Optional[Mapping[str, Any]]) – Default answers.

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• kbi_msg (str) – The message to be printed on a keyboard interrupt.

• true_color (bool) – Use true color output.

• color_depth – Color depth to use. If true_color is set to true then this value is ignored.

• type – Default type value to use in question config.

• filter – Default filter value to use in question config.

• name – Default name value to use in question config.

• when – Default when value to use in question config.

• default – Default default value to use in question config.

• kwargs (Any) – Additional options passed to every question.

Return type
Dict[str, Any]

Returns
Dictionary of question answers.

questionary.unsafe_prompt(answers=None, patch_stdout=False, true_color=False, **kwargs)
Prompt the user for input on all the questions.

Won’t catch keyboard interrupts.

Parameters

• questions (Union[Dict[str, Any], Iterable[Mapping[str, Any]]]) – A list of question
configs representing questions to ask. A question config may have the following options:

– type - The type of question.

– name - An ID for the question (to identify it in the answers dict).

26 Chapter 1. License

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict

Questionary, Release 2.0.1

– when - Callable to conditionally show the question. This function takes a dict represent-
ing the current answers.

– filter - Function that the answer is passed to. The return value of this function is saved as
the answer.

Additional options correspond to the parameter names for particular question types.

• answers (Optional[Mapping[str, Any]]) – Default answers.

• patch_stdout (bool) – Ensure that the prompt renders correctly if other threads are print-
ing to stdout.

• true_color (bool) – Use true color output.

• color_depth – Color depth to use. If true_color is set to true then this value is ignored.

• type – Default type value to use in question config.

• filter – Default filter value to use in question config.

• name – Default name value to use in question config.

• when – Default when value to use in question config.

• default – Default default value to use in question config.

• kwargs (Any) – Additional options passed to every question.

Return type
Dict[str, Any]

Returns
Dictionary of question answers.

Raises
KeyboardInterrupt – raised on keyboard interrupt

1.6 Support

Please open an issue with enough information for us to reproduce your problem. A minimal, reproducible example
would be very helpful.

1.7 Contributor’s Guide

1.7.1 Steps for Submitting Code

Contributions are very much welcomed and appreciated. Every little bit of help counts, so do not hesitate!

1. Check for open issues, or open a new issue to start some discussion around a feature idea or bug. There is a
contributor friendly tag for issues that should be ideal for people who are not familiar with the codebase yet.

2. Fork the repository on GitHub to start making your changes.

3. Install Poetry.

4. Configure development environment.

make develop

1.6. Support 27

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://github.com/tmbo/questionary/issues/new
https://stackoverflow.com/help/minimal-reproducible-example
https://github.com/tmbo/questionary/issues?direction=desc&labels=good+first+issue&page=1&sort=upd
https://github.com/tmbo/questionary
https://python-poetry.org/docs/#installation

Questionary, Release 2.0.1

5. Write some tests that show the bug is fixed or that the feature works as expected.

6. Ensure your code passes the code quality checks by running

$ make lint

7. Check all of the unit tests pass by running

$ make test

8. Check the type checks pass by running

$ make types

9. Send a pull request and bug the maintainer until it gets merged and published

1.7.2 Bug Reports

Bug reports should be made to the issue tracker. Please include enough information to reproduce the issue you are
having. A minimal, reproducible example would be very helpful.

1.7.3 Feature Requests

Feature requests should be made to the issue tracker.

1.7.4 Other

Create a New Release

1. Update the version number in questionary/version.py and pyproject.toml.

2. Add a new section for the release to Changelog.

3. Commit these changes.

4. git tag the commit with the release version number.

GitHub Actions will build and push the updated library to PyPi.

Create a Command Line Recording

1. Install the following tools:

$ brew install asciinema
$ npm install --global asciicast2gif

2. Start the recording with asciinema:

$ asciinema rec

3. Do the thing you want to record.

4. Convert to gif using asciicast2gif:

28 Chapter 1. License

https://github.com/tmbo/questionary/issues
https://stackoverflow.com/help/minimal-reproducible-example
https://github.com/tmbo/questionary/issues

Questionary, Release 2.0.1

$ asciicast2gif -h 7 -w 120 -s 2 <recording> output.gif

1.8 Changelog

1.8.1 2.0.1 (2023-09-08)

• Updated dependencies.

• Fixed broken documentation build.

1.8.2 2.0.0 (2023-07-25)

• Updated dependencies.

• Modified default choice selection based on the Choice value. Now, it is not necessary to pass the same instance
of the Choice object: the same value may be used.

• Fixed various minor bugs in development scripts and continuous integration.

• Improved continuous integration and testing process.

• Added pull request and issue templates to the GitHub repository.

• Implemented lazy function call for obtaining choices.

• Expanded the test matrix to include additional Python versions.

• Added the ability to specify the start point of a file path.

• Enabled displaying arbitrary paths in file path input.

• Allowed skipping of questions in the unsafe_ask function.

• Resolved typing bugs.

• Included a password confirmation example.

• Now returning selected choices even if they are disabled.

• Added support for Emacs keys (Ctrl+N and Ctrl+P).

• Fixed rendering errors in the documentation.

• Introduced a new print question type.

• Deprecated support for Python 3.6 and 3.7.

• Added dynamic instruction messages for checkbox and confirm.

• Removed the upper bound from the Python version specifier.

• Added a press_any_key_to_continue prompt.

1.8. Changelog 29

Questionary, Release 2.0.1

1.8.3 1.10.0 (2021-07-10)

• Use direct image URLs in README.md.

• Switched to poetry-core.

• Relax Python version constraint.

• Add pointer option to checkbox and select.

• Change enter instruction for multiline input.

• Removed unnecessary Poetry includes.

• Minor updates to documentation.

• Added additional unit tests.

• Added use_arrow_keys and use_jk_keys options to checkbox.

• Added use_jk_keys and show_selected options to select.

• Fix highlighting bug when using default parameter for select.

1.8.4 1.9.0 (2020-12-20)

• Added brand new documentation https://questionary.readthedocs.io/ (thanks to @kiancross)

1.8.5 1.8.1 (2020-11-17)

• Fixed regression for checkboxes where all values are returned as strings fixes #88.

1.8.6 1.8.0 (2020-11-08)

• Added additional question type questionary.path

• Added possibility to validate select and checkboxes selections before submitting them.

• Added a helper to print formatted text questionary.print.

• Added API method to call prompt in an unsafe way.

• Hide cursor on select only showing the item marker.

1.8.7 1.7.0 (2002-10-15)

• Added support for Python 3.9.

• Better UX for multiline text input.

• Allow passing custom lexer.

30 Chapter 1. License

https://questionary.readthedocs.io/
https://github.com/kiancross
https://github.com/tmbo/questionary/issues/88

Questionary, Release 2.0.1

1.8.8 1.6.0 (2020-10-04)

• Updated black code style formatting and fixed version.

• Fixed colour of answer for some prompts.

• Added py.typed marker file.

• Documented multiline input for devs and users and added tests.

• Accept style tuples in title argument annotation of Choice.

• Added default for select and initial_choice for checkbox prompts.

• Removed check for choices if completer is present.

1.8.9 1.5.2 (2020-04-16)

Bug fix release.

• Added .ask_async support for forms.

1.8.10 1.5.1 (2020-01-22)

Bug fix release.

• Fixed .ask_async for questions on prompt_toolkit==2.*. Added tests for it.

1.8.11 1.5.0 (2020-01-22)

Feature release.

• Added support for prompt_toolkit 3.

• All tests will be run against prompt_toolkit 2 and 3.

• Removed support for Python 3.5 (prompt_toolkit 3 does not support that any more).

1.8.12 1.4.0 (2019-11-10)

Feature release.

• Added additional question type autocomplete.

• Allow pointer and highlight in select question type.

1.8.13 1.3.0 (2019-08-25)

Feature release.

• Add additional options to style checkboxes and select prompts #14.

1.8. Changelog 31

https://github.com/tmbo/questionary/pull/14

Questionary, Release 2.0.1

1.8.14 1.2.1 (2019-08-19)

Bug fix release.

• Fixed compatibility with Python 3.5.2 by removing Type annotation (this time for real).

1.8.15 1.2.0 (2019-07-30)

Feature release.

• Allow a user to pass in a validator as an instance #10.

1.8.16 1.1.1 (2019-04-21)

Bug fix release.

• Fixed compatibility with python 3.5.2 by removing Type annotation.

1.8.17 1.1.0 (2019-03-10)

Feature release.

• Added skip_if to questions to allow skipping questions using a flag.

1.8.18 1.0.2 (2019-01-23)

Bug fix release.

• Fixed odd behaviour if select is created without providing any choices instead, we will raise a ValueError now
#6.

1.8.19 1.0.1 (2019-01-12)

Bug fix release, adding some convenience shortcuts.

• Added shortcut keys j (move down the list) and k (move up) to the prompts select and checkbox (fixes #2).

• Fixed unclosed file handle in setup.py.

• Fixed unnecessary empty lines moving selections to far down (fixes #3).

1.8.20 1.0.0 (2018-12-14)

Initial public release of the library.

• Added python interface.

• Added dict style question creation.

• Improved the documentation.

• More tests and automatic Travis test execution.

32 Chapter 1. License

https://github.com/tmbo/questionary/pull/10
https://github.com/tmbo/questionary/pull/6
https://github.com/tmbo/questionary/issues/2
https://github.com/tmbo/questionary/issues/3

INDEX

A
ask() (questionary.Form method), 22
ask() (questionary.Question method), 24
ask_async() (questionary.Form method), 23
ask_async() (questionary.Question method), 24
autocomplete() (in module questionary), 13

B
build() (questionary.Choice static method), 22

C
checkbox() (in module questionary), 12
checked (questionary.Choice attribute), 22
Choice (class in questionary), 22
confirm() (in module questionary), 9

D
default_separator (questionary.Separator attribute),

25
disabled (questionary.Choice attribute), 22

F
Form (class in questionary), 22
form() (in module questionary), 25
FormField (class in questionary), 25

K
key (questionary.FormField attribute), 25

L
line (questionary.Separator attribute), 25

P
password() (in module questionary), 7
path() (in module questionary), 7
press_any_key_to_continue() (in module ques-

tionary), 15
print() (in module questionary), 14
prompt() (in module questionary), 25

Q
Question (class in questionary), 23
question (questionary.FormField attribute), 25

R
rawselect() (in module questionary), 11

S
select() (in module questionary), 9
Separator (class in questionary), 25
shortcut_key (questionary.Choice attribute), 22
skip_if() (questionary.Question method), 24

T
text() (in module questionary), 6
title (questionary.Choice attribute), 22

U
unsafe_ask() (questionary.Form method), 23
unsafe_ask() (questionary.Question method), 24
unsafe_ask_async() (questionary.Form method), 23
unsafe_ask_async() (questionary.Question method),

25
unsafe_prompt() (in module questionary), 26

V
value (questionary.Choice attribute), 22

33

	License
	Installation
	Use a Published Release
	Build from Source

	Quickstart
	Asking a Single Question
	Asking Multiple Questions

	Question Types
	Text
	Password
	File Path
	Confirmation
	Select
	Raw Select
	Checkbox
	Autocomplete
	Printing Formatted Text
	Press Any Key To Continue

	Advanced Concepts
	Validation
	A Validation Example using the Password Question

	Keyboard Interrupts
	Safe
	Unsafe

	Asynchronous Usage
	Themes & Styling
	Styling Choices in Select & Checkbox Questions

	Conditionally Skip Questions
	Create Questions from Dictionaries
	A Complex Example using a Dictionary Configuration

	API Reference
	Support
	Contributor’s Guide
	Steps for Submitting Code
	Bug Reports
	Feature Requests
	Other
	Create a New Release
	Create a Command Line Recording

	Changelog
	2.0.1 (2023-09-08)
	2.0.0 (2023-07-25)
	1.10.0 (2021-07-10)
	1.9.0 (2020-12-20)
	1.8.1 (2020-11-17)
	1.8.0 (2020-11-08)
	1.7.0 (2002-10-15)
	1.6.0 (2020-10-04)
	1.5.2 (2020-04-16)
	1.5.1 (2020-01-22)
	1.5.0 (2020-01-22)
	1.4.0 (2019-11-10)
	1.3.0 (2019-08-25)
	1.2.1 (2019-08-19)
	1.2.0 (2019-07-30)
	1.1.1 (2019-04-21)
	1.1.0 (2019-03-10)
	1.0.2 (2019-01-23)
	1.0.1 (2019-01-12)
	1.0.0 (2018-12-14)

	Index

